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In present work, the compression strength and tensile strength of phosphate graphite sand with compo-
sitional and technological parameters (phosphoric acid, Al2O3, drying temperature, and drying time) were
experimentally investigated. An L9 (3

4) orthogonal array was employed to analyze the effect of these four
parameters on the compression strength and tensile strength, respectively. In addition, the radial basis
function artificial neural network (RBFANN) was used to establish the models for compression strength and
tensile strength, respectively. Moreover, the simulation and prediction results by the RBFANN and linear
and non-linear regressions are compared. The results are as follows: the optimum scheme for phosphate
graphite sand designed by us is phosphoric acid 24%, Al2O3 30%, drying temperature 400 �C, and drying
time 60 min. The ascending sequence of the effect of four factors on both compression strength and tensile
strength of phosphate graphite sand is drying time, drying temperature, Al2O3, and phosphoric acid. In
addition, the prediction and simulation results show that RBFANN outperforms Taguchi approach for
modeling.

Keywords artificial neural network, optimization, orthogonal
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1. Introduction

The graphite mold has been applied to obtain high-quality
castings (Ref 1-3) because it possesses such performances as
high heat conductivity (116.3-127.9 Wm-1 K-1) (Ref 2) and
coefficient of temperature conductivity which leads to high
chilling effect, high melting temperature and high strength,
better heat resistance capacity and non-deformability, low linear
expansion factor (0.5-4.0· 10-6/�C) (Ref 2), better suitability
and low cost. As shown in (Ref 1), heat conductivity and
coefficient of temperature conductivity of graphite mold are 2-3
and 3-4 times more than those of sand mold, respectively. The
microstructure of Al-based alloy (ZL101) casting by graphite
mold is greatly refined, the pinhole and the porosity defect in
Al-castings are effectively eliminated, resulting in the increase
of 15.4% for tensile strength and 25.8% for extension
percentage. Pan (Ref 3) successfully prepared Al2O3-Cr and
Al2O3-(Cr2O3)-Cr ceramic matrix composites in ceramic mold
and graphite mold by combustion synthesis. The uniformity
and fineness of microstructure of the composites in graphite
mold are superior to those obtained in a ceramic mold.
Therefore, it is important to research the performance of
phosphate graphite sand.

The orthogonal design and artificial neural network modeling
technique are two main methods for material design and
evaluation. Orthogonal design is a method for test design aiming
to multifactor andmultilevel based on orthogonal theory. Since it
presents equilibrium distribution and regular comparability, the
optimum scheme can be rapidly obtained by analysis of variance,
largely reducing testing numbers, shortening test time, and
minimizing cost. And it has been applied to optimize material�s
composition, production technology, management and distribu-
tion, etc. (Ref 4-8). For example, Bagci and Aykut (Ref 6)
discussed an application of the Taguchi method for investigating
the effects of cutting parameters on the surface roughness value
in the face milling of stellite 6 material. In addition, Tsao (Ref 8)
investigated the thrust force and surface roughness of core drill
with drill parameters (grit size of diamond, thickness, feed rate,
and spindle speed) in drilling carbon fiber reinforced plastic
(CFRP) laminate by an orthogonal array.

Artificial neural networks have received extensive attention
because of their self-adaptive, self-organization, and self-study.
It is well known that they can solve many practical problems as
pattern recognition, function approximation, system identifica-
tion, time series forecasting, etc. (Ref 9-16). For example, Shie
(Ref 9) optimized dry machining parameters for high-purity
graphite in end-milling process by an artificial neural network
and the sequential quadratic programming method. The results
showed that this algorithm yielded better performance than the
traditional methods such as the Taguchi method and the design
of experiments approach. Sheikh-Ahmand and Twomey (Ref
10) developed an artificial neural network model for high
strain-rate deformation of Al 7075-T6 based on flow data found
in the literature and orthogonal machining tests and the ANN
predictions were shown to be superior to a parametric
constitutive model.

The aims of this article are to obtain optimum compositional
and technological parameters for phosphate graphite sand and
compare the differences between afore-mentioned two methods.
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2. Experimental

2.1 Experimental Procedures

After the graphite powder (2-3 mm) and Al2O3 powder
(wt.95%, 1 mm) were dry mixed 5 min in QS114 sand mixer,
the mixture of graphite and Al2O3 powder was mixed 10 min
by adding the mixture whose ratio of 1:1 (wt.%) for water and
phosphoric acid (wt.85%). And then, the wet mixture was made
into three U50· 50 mm standard samples for compression
strength test and three ‘‘8’’ shaped standard samples (shown in
Fig. 1) for tensile strength test by XYD-1 molding machine
under 0.2 MPa (±0.01 MPa). Finally, these samples were dried
in SX2-12-10 resistance furnace (±1 �C). The compression and
tensile tests were performed on SQY hydraulic strength-testing
machine (±0.01 MPa) and XQY-II intelligence sand strength-
testing machine (±0.01 MPa), respectively.

2.2 Experimental Plan

For the elaboration of experimental plan, the orthogonal
method for four factors at three levels was adopted. In Table 1,
the factors to be studied and the assignment of the correspond-
ing levels are indicated. The chosen array was the L9 (3

4) which
has nine rows corresponding to the number of tests (8 degrees
of freedom) with four columns at three levels, as shown in
Table 2. The factors are assigned to the columns. The plan of
experiments is made of nine tests (array rows) in which the first
column was assigned to phosphoric acid (A), the second
column to the Al2O3 (B), the third column to the drying

temperature (C), and the forth column to the drying time (D),
respectively. The experimental results for the compression
strength and tensile strength are shown in Table 2.

3. Results and Analyses

3.1 Orthogonal Design

An analysis of variance of the data was done with the
compression strength and the tensile strength for analyzing the
influence of the phosphoric acid, Al2O3, drying temperature
and drying time of the contact on the total variance of
the results, respectively. Tables 3 and 4 show the results of the
analysis of variance with the compression strength and the
tensile strength, respectively. The last column of Tables 3 and
4 shows the percentage of contribution (P) on the total
variation indicating the degree of influence on the result. From
the analysis of Tables 3 and 4, one can observe that the
ascending sequences of influence of four factors on compres-
sion strength and tensile strength both are drying time, drying
temperature, Al2O3, and phosphoric acid. In addition, the

Fig. 1 Schematic diagram of the sample for tensile strength

Table 1 Assignment of the levels to the factors

Level

Phosphoric
acid,

A, wt.%
Al2O3,
B, wt.%

Drying
temperature,

C, �C

Drying
time,
D, min

1 18 16 400 40
2 21 18 500 60
3 24 30 600 80

Table 2 Orthogonal array L9 (3
4) and experimental

results

Exp. no. A B C D
Compression
strength, MPa

Tensile
strength, MPa

1 1 1 1 1 0.91 0.08
2 2 1 2 2 0.57 0.13
3 3 1 3 3 1.27 0.24
4 1 2 2 3 0.90 0.19
5 2 2 3 1 0.48 0.30
6 3 2 1 2 1.08 0.23
7 1 3 3 2 0.65 0.18
8 2 3 1 3 1.29 0.21
9 3 3 2 1 2.22 0.47

Table 3 Analysis of variance for compression test

Source of
variance

Squared
deviations

Degrees of
freedom Variances P, %

A 1.0488 2 0.5244 47.0
B 0.5514 2 0.2757 24.7
C 0.3427 2 0.1714 15.3
D 0.2896 2 0.1448 13.0
Total 2.2325 8 – 100

Table 4 Analysis of variance for tensile test

Source of
variance

Squared
deviations

Degrees of
freedom Variances P, %

A 0.0407 2 0.0204 40.9
B 0.0289 2 0.0145 29.1
C 0.0167 2 0.0084 16.8
D 0.0131 2 0.0066 13.2
Total 0.0994 8 – 100
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averaged values of compression strength and tensile strength
for each parameter at different levels are plotted in Fig. 2. It is
clear from Fig. 2 that the compression strength and the tensile
strength are both maximums at the third level of parameter A
(A3) and parameter B (B3), the second level of parameter C
(C2) and the first level of D (D1). It indicates that the optimum
combinations of four factors for the compression strength and
tension strength both are A3B3C2D1. Therefore, the theoretical
optimum values are in agreement with the values of test 9,
i.e., 2.22 MPa for the compression strength and 0.47 MPa for
tensile strength, respectively. It indicates that the test 9 is the
optimum test for both the compression strength and tensile
strength. On the other hand, the correlations between four
factors (phosphoric acid, Al2O3, drying temperature, and
drying time) and the measured parameters (compression
strength rc and tensile strength rt) can be obtained by
multiple linear and quadratic regressions, respectively. The
equations are as follows:

rc ¼ 0:1172Aþ 3:833� 10�2B� 1:467� 10�3C

� 1:25� 103D� 1:43; R ¼ 0:79 ðEq 1Þ

rt ¼ 2:722� 10�2Aþ 7:713� 10�3Bþ 3:333� 10�4C

� 1:75� 10�3D� 0:5723, R = 0.87 ðEq 2Þ

rc ¼ 17:469� 1:7106A� 0:2804Bþ 2.6867� 10�2C

� 0:12475Dþ 4.3519� 10�2A2 þ 6.8254� 10�3B2

� 2:8333� 10�5C2 þ 1.0292� 10�3D2; R ¼ 1 ðEq 3Þ

rt ¼ �5.833� 10�2Aþ 0:14484Bþ 6� 10�3C

� 2.225� 10�2Dþ 2.037� 10�3A2 � 2.94� 10�3B2

� 5:6667� 10�6C2 þ 1:71� 10�4D2 � 1:97233, R = 1

ðEq 4Þ

In order to examine the fitted effect of Eq 1-4, the root-
mean-square errors (RMSE) analysis (Ref 9) for the compres-
sion strength and tensile strength predicted by Eq 1-4 in the
orthogonal array are adopted. Tables 5 and 6 show the com-
parative results between the linear regression and quadratic
regression for the compression strength and tensile strength,
respectively. In Table 5, the RMSEs of the compression
strength for Eq 1 and 3 are 0.3007 and 0.0005, respectively.
In Table 6, the RMSEs of the tensile strength for Eq 2 and 4
are 0.0516 and 0, respectively. It indicates that Eq 1 and 2 do
not correlate the evolution of the compression strength and
the tensile strength with the phosphoric acid, Al2O3, drying
temperature and drying time, and the quadratic regression
outperforms the linear regression.

3.2 Artificial Neural Network Method

It is well-known that artificial neural network ANN can
extract usable information from large quantity of discrete data
with noise and is suitable for resolving the highly non-linear
and uncertain problems (Ref 13-16).

In general, there are two kinds of ANN, i.e., back-
propagation artificial neural network BPANN and radial basis
function artificial neural network RBFANN, for being used to
establish the model of the prediction. Although the BPANN
has stronger generalization capacity, it is difficult to select its

(a)

(c) (d)

(b)

Fig. 2 Effects of four factors on the compression strength and the tensile strength
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training parameters such as learning rate, initial weight, and
objective error, and the structure parameters such as the number
of hidden layers and the number of neurons in hidden layer. In
addition, the training procedure is time-consuming. However,
the RBFANN is easy to use and its training procedure is rapid,
though its generalization capacity is worse than that of BPANN.
In this section, the aim is to construct the RBFANN model
whose samples are the values of orthogonal arrays in Table 2
and research the performance of the RBFANN model. We
established two RBFANN models with four inputs (phosphoric
acid, Al2O3, drying temperature, and drying time) and one
output (either compression strength or tensile strength) for the
prediction of compression strength and tensile strength, respec-
tively. Nine sets of data conforming to L9 (3

4) design have been
procured and the outputs and inputs are normalized by Eq 5 to
improve the training efficiency.

x0 ¼ 0:1þ 0:8
x� xmin

xmax � xmin
ðEq 5Þ

where, x¢ is the normalized value of x, x is initial value of
one of afore-mentioned outputs and inputs, xmax and xmin are
the maximum and minimum of x, respectively.

It is important to select a suitable distribution parameter t,
which is a unique parameter during the training, in order to
obtain reliable RBFANN models for the compression strength
and tensile strength, respectively. According to the experience,
the parameter t = 2 is selected for both the compression strength
and tensile strength. After the RBFANN model has been
obtained, the adequacy of the model should be inspected to
confirm that the RBFANN model has extracted all relevant
information from the experimental data. TheRMSEanalysis (Ref
9) is adopted. The RMSEs for the compression strength and

Table 5 Comparison for the compression strength rc (MPa) by the RBFANN, Eq 1 and 3

Exp. no A B C D Actual rc

Predicted rc

by RBFANN
RBFANN
residual

Predicted rc
by Eq 1

Eq 1
residual

Predicted rc

by Eq 3 Eq 3 residual

1 1 1 1 1 0.91 0.91 0 0.6561 0.2539 0.9095 -0.0005
2 2 1 2 2 0.57 0.57 0 0.8360 -0.2660 0.5696 -0.0004
3 3 1 3 3 1.27 1.27 0 1.0159 0.2541 1.2696 -0.0004
4 1 2 2 3 0.90 0.90 0 0.5360 0.3640 0.8997 -0.0003
5 2 2 3 1 0.48 0.48 0 0.7909 -0.3109 0.4795 -0.0005
6 3 2 1 2 1.08 1.08 0 1.4109 -0.3309 1.0794 -0.0006
7 1 3 3 2 0.65 0.65 0 0.8743 -0.2243 0.6497 -0.0003
8 2 3 1 3 1.29 1.29 0 1.4943 -0.2043 1.2895 -0.0005
9 3 3 2 1 2.22 2.22 0 1.7492 0.4280 2.2194 -0.0006

RMS error
by RBFANN

0 RMS error
by Eq 1

0.3007 RMS error
by Eq 3

0.0005

Table 6 Comparison for the tensile strength rt (MPa) by the RBFANN, Eq 2 and 4

Exp. no A B C D
Actual

rt
Predicted rt

by RBFANN
RBFANN
residual

Predicted rt
by Eq 2

Eq 2
residual

Predicted rt

by Eq 4
Eq 4

residual

1 1 1 1 1 0.08 0.08 0 0.1044 -0.0244 0.08 0
2 2 1 2 2 0.13 0.13 0 0.1844 -0.0544 0.13 0
3 3 1 3 3 0.24 0.24 0 0.2644 -0.0244 0.24 0
4 1 2 2 3 0.19 0.19 0 0.0831 0.1069 0.19 0
5 2 2 3 1 0.30 0.30 0 0.2681 0.0319 0.30 0
6 3 2 1 2 0.23 0.23 0 0.2481 -0.0159 0.23 0
7 1 3 3 2 0.18 0.18 0 0.2440 -0.064 0.18 0
8 2 3 1 3 0.21 0.21 0 0.2240 -0.0140 0.21 0
9 3 3 2 1 0.47 0.47 0 0.4090 0.0610 0.47 0

RMS error
by RBFANN

0 RMS error
by Eq 2

0.0516 RMS error
by Eq 4

0

Table 7 Results of the examination test data and the predictions by RBFANN

Exp. no A B C D

Compression strength, MPa Tensile strength, MPa

RBFANN Actual Error, % RBFANN Actual Error, %

1c 18 16 500 60 0.5420 0.54 0.37 0.1278 0.13 -1.69
2c 24 18 400 80 0.9257 0.92 0.62 0.2180 0.22 -0.91
3c 21 30 600 60 1.2158 1.22 -0.34 0.2398 0.24 -0.08
4c 18 16 500 80 0.8861 0.89 -0.44 0.2258 0.23 -1.83
5c 21 30 400 60 1.5316 1.53 0.10 0.1873 0.18 4.06
6c 24 18 600 40 1.1475 1.14 0.66 0.4535 0.46 -1.41
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tensile strength are shown in Tables 5 and 6, respectively. In
Tables 5 and 6, the RMES of the compression strength and
tensile strength for the RBFANN both are 0. It indicates that
the RBFANN models for the compression strength and tensile
strength are both adequate. Furthermore, by investigating the
prediction capacity of RBFANN model, other six tests are
performed. Table 7 shows these six examination test data and the
corresponding values predicted by RBFANN models, respec-
tively. In addition, Fig. 3 shows the linear correlation coeffi-
cients, R, which measure the strength of a linear relationship
between the experimental data and the RBFANN predicted
values. As shown in Table 7, it is found that the maximum errors

are 4.06% for tension strength and 0.66% for compression
strength, respectively. At the same time, in Fig. 3, the correlation
coefficients are 0.9999 for the compression strength and 0.9994
for the tensile strength, respectively. It indicates that the
RBFANN models are rather effective.

3.3 Comparison Between Afore-mentioned Two Methods

As shown in the afore-mentioned analyses for orthogonal
design, the orthogonal analysis could be used to obtain the

(a)

(b)

Fig. 3 The relationships between the tested parameters and corre-
sponding values predicted by RBFANN. (a) Compression strength,
(b) tensile strength

Table 8 Results of the examination test data and the predictions by Eq 3 and 4, respectively

Exp. no. A B C D

Compression strength, MPa Tensile strength, MPa

Eq 3 Actual Error, % Eq 4 Actual Error, %

1c 18 16 500 60 0.6096 0.54 12.9 0.8684 0.13 568.0
2c 24 18 400 80 1.4662 0.92 59.4 0.0767 0.22 -65.1
3c 21 30 600 60 0.6096 1.22 -50.0 1.6683 0.24 595.1
4c 18 16 500 80 0.9964 0.89 12.0 0.4234 0.23 84.1
5c 21 30 400 60 0.9028 1.53 -4.1 0.4683 0.18 160.2
6c 24 18 600 40 1.2228 1.14 7.3 2.1667 0.46 371.0

Fig. 4 The simulation results of the relationships between two
parameters (the compression strength and tensile strength) and phos-
phoric acid by the linear regression and quadratic regression and
RBFANN model when B = 16 wt.%, C = 500 �C, and D = 60 min;
A = 18 wt.%, C = 600 �C, and D = 40 min, respectively
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optimum scheme, significance of each factor, percentage of
contribution of each factor, and the linear and non-linear
regressions. To investigate the prediction capacity of these
linear and non-linear regressions, Table 8 shows six examina-
tion test data and the corresponding values predicted by non-
linear regressions, i.e., Eq 3 and 4, respectively. From the
analysis of Table 8, one can observe that the maximum errors
are 59.4% for compression strength and 595.1% for the tensile
strength, respectively. Therefore, one can consider that Eq 3
and 4 do not correlate the evolution of the compression strength
and the tensile strength with the phosphoric acid, Al2O3, drying
temperature, and drying time. Nevertheless, the maximum
errors of RBFANN models are 0.66% for the compression
strength and 4.06% for the tensile strength, respectively.
Obviously, the prediction capacity of the RBFANN model is
better than that of Eq 3 and 4. In addition, Fig. 4 shows the
simulation results of the relationships between two parameters
(the compression strength and tensile strength) and phosphoric
acid by the linear regression and quadratic regression and
RBFANN model when B = 16 wt.%, C = 500 �C, and D = 60
min; B = 18 wt.%, C = 600 �C, and D = 40 min, respectively.

Figure 5 shows the simulation results of the relationships
between two parameters (the compression strength and tensile
strength) and drying time by the linear regression and quadratic
regression and RBFANN model when A = 18 wt.%,
B = 16 wt.%, and C = 500 �C; A = 21 wt.%, B = 18 wt.%,
and C = 400 �C; A = 24 wt.%, B = 30 wt.%, and C = 400 �C,
respectively. From the analysis of Fig 4 and 5, although the
simulation results of the linear regression are in according with
the experimental data when A = 24 wt.%, B = 18 wt.%, and
C = 400 �C, other simulation results are largely different from
the experimental values. In addition, the simulation results of
the quadratic regressions are in agreement with the experimen-
tal data when B = 18 wt.%, C = 600 �C, and D = 40 min,
A = 18 wt.%, B = 16 wt.%, and C = 500 �C, and
A = 21 wt.%, B = 18 wt.%, and C = 400 �C; however, other
simulation results deviate from the experimental values.
Nevertheless, the simulation results of the RBFANN models
are in better agreement with the experimental results under any
conditions. It indicates that the RBFANN outperforms the
traditional regression method.

4. Conclusions

By using the orthogonal design, Fuzzy optimum design, and
artificial neural network modeling technique in present work,
the following summary and conclusions can be made. The
optimum composition and technology for phosphate graphite
sand designed by us is phosphoric acid 24%, Al2O3 30%,
drying temperature 400 �C, and drying time 60 min. The
analysis of variance indicates that ascending sequence of the
effect of four factors on both compression strength and tensile
strength of phosphate graphite sand is drying time, drying
temperature, Al2O3, and phosphoric acid. The theoretical
optimum values for compression strength and tensile strength
are 2.22 MPa and 0.47 MPa, respectively.

Poor prediction and simulation results of linear and
quadratic regressive models for the compression strength and
tensile strength by orthogonal analysis indicate that the
relationships between four factors (phosphoric acid, Al2O3,
drying temperature, and drying time) and two parameters of
performance (the compression strength and tensile strength) are
more complex, respectively. However, the prediction and
simulation results of the RBFANN models are in better
agreement with the corresponding tested values. It indicates
that the RBFANN can be used to establish reliable model.
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